Phantom Limb Pain: Caring for Patients with Amputations (Part I)

Phantom Limb Pain: Caring for Patients with Amputations (Part I)

Author: William Morgan, DC/Friday, April 1, 2016/Categories: April 2016

Rate this article:
3.0
By William E. Morgan, DC

WITH HUNDREDS OF CHIROPRACTIC PHYSICIANS working in the Veterans Affairs (VA) and Department of Defense (DOD) health care systems, combined with an increasing number of veterans entering the civilian sector of health care, it is very likely that doctors of chiropractic (DCs) will contribute to the multidisciplinary care of war-wounded amputees. DCs should be well-versed in the unique neurological and physiological nuances associated with amputations, as well as with the mechanical changes that accompany them.

In addition to war-wounded amputees, there is a dramatic increase in adult-onset diabetes in the United States and Mexico, which is another major cause of amputations. This series introduces practitioners to the unique complications accompanying amputations. This first article introduces the phenomenon known as phantom limb pain. The attempt to understand this condition has led to increased knowledge in treating many types of pain and a deeper understanding of neuroplasticity.

Phantom limb pain (i.e., the perception of pain, paresthesia, itching, tingling and other sensations of a missing limb) occurs in more than 90 percent of those who have lost a limb to amputation.1 This phenomenon has been documented for centuries in medical textbooks and in literature. While the perception of phantom limb pain may be a mild painless annoyance to some, in others, it is very disruptive and interferes with work or sleep. Phantom limb pain is a hallucination created in the subconscious mind that a missing limb still exists. This hallucination involves a very realistic perception of the missing limb even though the conscious mind clearly conceptualizes the lost limb.

Particularly interesting is that phantom limb pain has been noted in those who are missing limbs due to birth defects.2 People who never had a limb can still have the perception of phantom limb pain. This perception points to the prospect that the brain is predisposed to an interaction with its limbs. That is, the brain is hardwired to send and receive neurotransmissions with the various body parts. The perception of having limbs is implanted into the brain rather than learned. In response to this knowledge, Ronald Melzack introduced the concept of the presence of a neuromatrix.1

The Neuromatrix

The neuromatrix theory states that pain is not produced from passive recognition of nociception but rather by an aggregate of the central nervous system, the brain and spinal cord, actively working together to generate the perception of pain. The neuromatrix may or may not actively produce pain based on nociception and many other factors. The neuromatrix may produce pain when there are not significant amounts of nociceptive input. We see this phenomenon in phantom limb pain, complex regional pain syndrome and other chronic pain syndromes. There are other times when little or no pain is perceived although there is a significantly large amount of nociceptive input. For example, in the heat of battle, it is common for troops to receive wounds that would normally be very painful, yet they do not feel the pain. The brain apparently recognizes that the distraction of pain in a crisis could compromise the individual’s ability to overcome the immediate threat and could result in death. Therefore the input of nociception is ignored by the brain and pain is not perceived. The brain actively prioritizes survival over localized tissue preservation. It chooses not to produce the perception of pain.

Key Points

• Tissue damage does not cause pain. It may result in the transmission of nociceptive impulses, but it does not directly cause pain.

• The central nervous system (e.g., brain and spinal cord) produces the perception of pain. This is often an interpretation of nociceptive input but not always.

• Nociception and pain are not the same thing.

• Production of the perception of pain is a neurologically active phenomenon, not a passive one.

The Homunculus

Homunculus literally means “little man” in Latin. The brain has been mapped out as a blueprint in the cortical homunculus. There are two renditions of the cortical homunculus: the somatosensory and the motor. In the somatosensory homunculus, we see that certain parts of the brain are responsible for the innervation of certain parts of the body (See Figure 1, Left image). Note that the hand and arm occupy a significantly large portion of the homunculus. In the case of an upper extremity amputation (See Figure 1, Right image), there is a large portion of the brain once designated to innervate the arm, but it has no arm with which to interact. There is a vacuum of interaction, a void. Nature abhors a vacuum. So the neuromatrix fills the vacuum by actively creating the missing perceptions and sensations that the arm may feel, resulting in phantom limb pain.

In the absence of sensory input from a limb, as seen in the amputation of a limb, the brain creates its own sensory input to satisfy its need to account for that body part. These manufactured sensations may be the perception of warmth or cold, itchiness, achiness or pain, sometimes severe refractory pain. Phantom limb pain can be incapacitating and disruptive to sleep, work and relationships.

In addition to phantom limb pain, patients with amputations can also experience hypersensitivity of the adjoining body parts within the somatosensory homunculus. When looking at the somatosensory homunculus (See Figure 1, Left image), the face is located next to the upper extremity, and the genitals are located next to the leg. Following an amputation, the portion normally designated to account for the upper extremity melds with the portion that normally accounts for the face. A missing leg might meld with the portion that normally accounts for the genitals. This can result in altered sensations and increased sensitivity of the neighboring body parts in the homunculus. For example, a patient with a missing arm may experience hypersensitivity or pain in the face and jaw. A patient with a leg amputation may experience hypersensitivity or pain of the genitals. This was demonstrated when Ramachandran used light stimulation of patients’ faces with a Q-tip to produce the perception of sensations in the missing limb.3 The neurological complications of amputation combined with the more obvious and visually apparent consequences of a lost limb (e.g., residual limb care, prostheses, wheelchairs, ambulation and activities of daily living) can prove very disruptive to patients.

There is a strong connection between the brain’s awareness of the body and sight. The brain coordinates its perception of self through the combined senses of proprioception and sight. When conflict occurs between what the brain expects to see – proprioception – and the reality of a missing limb, phantom limb pain can occur.4 Recognizing the distinct visual association between the brain and the neuromatrix and how strongly the interactive sense of self responds to visual cues, researchers sought to develop a non-pharmaceutical treatment for phantom limb pain. Ramachandran and colleagues identified the contribution of sight to phantom limb pain and devised a novel treatment for phantom limb pain: mirror therapy. The next installment in this series will introduce mirror therapy as an effective non-pharmaceutical treatment of phantom limb pain.

Disclaimer

The views expressed in this article are those of the author and do not necessarily reflect the official policy or position of the Department of the Navy, Department of the Army, Department of Defense nor the U.S. Government.

Endnotes

1) Melzack R. Phantom limbs and the concept of a neuromatrix. Trends Neurosci. 1990;13:88-92.

2) Melzack R, Israel R, Lacroix R, Schultz G. Phantom limbs in people with congenital limb deficiency or amputation in early childhood. Brain. 1997 Sep;120 (Pt 9):1603-20.

3) Ramachandran VS, Rogers-Ramachandran D, Cobb S. Touching the phantom limb. Nature. 1995; 377: 489–90.

4) Ramachandran VS, Hirstein W. The perception of phantom limbs. Brain. 1998;121:1603-1630.

Dr. William Morgan divides his clinical time between a hospital-based chiropractic clinic and executive health clinics in Washington, D.C. He is adjunct faculty for a medical school and several chiropractic colleges. He is on the board of trustees for Palmer College of Chiropractic. His speaking calendar can be viewed at http://bethesdaspineinstitute.com. He can be reached through his website, www.drmorgan.info.

Print

Number of views (3145)/Comments (0)

Please login or register to post comments.

Theme picker